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Abstract. Role Based Access Control (RBAC) has been introduced in an effort 
to facilitate authorization in database systems. It introduces roles as a new layer 
in between users and permissions. This not only provides a well maintained 
access granting mechanism, but also alleviates the burden to manage multiple 
users. While providing comprehensive access control, current RBAC models 
and systems do not take into consideration the possible risks that can be 
incurred with role misuse. In distributed environments a large number of users 
are a very common case, and a considerable number of them are first time 
users. This fact magnifies the need to measure risk before and after granting an 
access. We investigate the means of managing risks in RBAC employed 
distributed environments and introduce a probability based novel risk model. 
Based on each role, we use information about user credentials, current user 
queries, role history log and expected utility to calculate the overall risk. By 
executing data mining on query logs, our scheme generates normal query 
clusters. It then assigns different risk levels to individual queries, depending on 
how far they are from the normal clusters. We employ three types of granularity 
to represent queries in our architecture. We present experimental results on real 
data sets and compare the performances of the three granularity levels. 
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1   Introduction 

Today more than ever, data sharing among a variety of users from different domains 
and environments is a key requirement. Data sharing is crucial for decision making 
processes in that it enables individuals to take decisions based on complete and 
accurate information. Data sharing, however, has to be carried out by safeguarding 
data confidentiality through the use of an access control mechanism. To provide 
adequate access control, database systems thus necessitate a security tool combining 
together policies, technologies and people [18]. Unfortunately, security requirements 
of a database are usually contradictory to the user requirements: On one hand security 
forces us to have strict limitations over permissions; on the other hand, users demand 
more permission to accomplish their tasks [16]. Furthermore, in a typical distributed 
environment, users tend to establish coalitions for data sharing purposes. Such an 
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environment is typically not closed and its users are very often at different locations. 
Moreover, access control must not affect the performance of the query processing 
engine, security [20] and other components of the database system. 

Role Based Access Control (RBAC) model [11, 15], is a practical solution to the 
problems listed above. The introduction of roles as an intermediate level between 
users and permissions makes user management easier. The use of roles in RBAC also 
allows one to determine who can take what actions on which data [12]. In real world, 
we expect role and permission associations to change less frequently than user and 
permission associations. This is because, organizations usually have a well defined set 
of privileges for each role and they stay stable; whereas users can change positions, 
hence require dynamic allocation of permissions. By its ability to predefine role and 
permission relationships, RBAC supports the three fundamental security principles as 
the least privilege, separation of duties and data abstraction [26]. All these features 
make RBAC feasible and easy to use. 

In RBAC model, credentials are used to determine legitimate users and thereafter 
users are assigned to roles. But RBAC does not consider the risk in this process. 
When we look at the potential sources of risk in an RBAC administered database, we 
see that mainly two sources of risk contribute to the overall risk evaluation: one is the 
inherent risk that is incurred by user credentials such as the location of connection, if 
the user is the first time user or not, etc., and the other is the risk resulting by role 
misuse or abuse. By role misuse we refer to the unintentional incorrect use of a role, 
whereas by role abuse we refer to the intentional incorrect use. For the sake of 
simplicity, we denote both intentional and unintentional cases with the same phrase as 
role misuse throughout the paper. Given user credentials, RBAC perfectly handles the 
risk incurred by credentials: It eliminates the illegal access attempts by totally 
rejecting them. Likewise, in case of access requests exceeding the actual role 
definitions, RBAC rejects these attempts. Still, there will be users attempting to 
exploit their already assigned permissions by using them over and over again. 
Unfortunately, RBAC does not consider this type of role misuse. So, in that sense 
every access attempt carries a potential risk.  

In this paper, we address the security of RBAC employed distributed databases by 
focusing on the risk management in such systems. Motivated by the strong and 
flexible access control facility that RBAC provides, we introduce an extension to it. 
We design and implement a mathematical model to measure risk, so that RBAC 
provides improved security for access control. We know that several factors such as 
immature and improper enforcement of constraints, delegation processes and/or role 
hierarchy construction contribute to the risk in databases. We assume that these 
factors are all mitigated with comprehensive risk management and we only focus on 
risks caused by user credentials and misuse. 

As a motivating example, assume that several companies from various countries 
come together under an international organization for business purposes. Their aim is 
to combine their resources to conduct business all around the world. The reason for 
that is two fold: First, companies cannot realize projects individually with limited 
resources in their own countries, and second sometimes it is economically more 
feasible to make an investment with partners in another country. The resources each 
country has are different: for instance some countries have very fertile soil for good 
plantation, some have money, others are good at technology and equipment, etc. To 
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conduct joint projects, two or more of the member countries initiate a coalition. 
During the lifetime of a coalition, the participating countries need to establish and 
maintain mutual trust for each other. Imagine that countries A, B and C come together 
to start up a new factory in country C. Let’s call this coalition as coalition ABC. As 
long as this coalition is active, the participating companies from countries A, B and C 
will be exchanging information about several topics as the amount of money they will 
invest for the new factory, the details about particular resources each country will 
provide, the physical location of the factory to be settled in country C, etc. Even some 
other countries, say country D that is not a participating country in the coalition ABC, 
but a member of the organization, may request information from participants about 
this coalition. At this point, countries A, B and C may not trust each other completely. 
But again they need to communicate and it is very important for them to keep their 
project secret, so that no other country steals the idea before they start the new 
factory. While exchanging information, countries A, B, C –and also country D in case 
it communicates with the coalition- require a secure access control mechanism to 
identify users who would attempt to misuse the permissions granted to them by their 
role definitions. For example, assume that a human resources personnel from country 
A has permission to ask salary information for employees and he asks these questions: 
“What is the salary of the general manager of the new factory?”, “What is the salary 
of the account manager of the new factory?”, “What is the salary of human resources 
manager of the new factory?” etc. to reveal the salaries of the whole employers in the 
new factory. Even if he is a legal user, submitting multiple salary questions to the 
system should indicate a suspicious situation. In that sense, every communication in 
this business coalition incurs a potential risk. 

Assume that RBAC is employed to detect unauthorized access attempts, and 
authorized but still illegal requests that exceed the actual permissions in this sample 
database. While facilitating access control in multiple aspects, RBAC remains 
inadequate in detecting the potential risk of users’ misuse. To improve the strength of 
RBAC, we propose a quantitative model to evaluate risk in such a database. 
Throughout the paper, we use the international business organization example for 
further reference. 

1.1   Our Contribution 

RBAC is an effective tool to protect information assets from internal and external 
threats [18]. It gets user credentials to assign legal users to roles. While doing that, 
RBAC provides flawless control over users in two ways: It totally rejects users having 
credentials that do not comply with the role requirements, as well as user attempts that 
ask for more than what their role actually allows. Yet, employing RBAC alone is not 
enough to eliminate security threats. Even if roles are well defined, every access 
request carries a potential risk of role misuse. To provide a comprehensive security, 
we need to analyze queries to measure the risk that is incurred to the system by their 
submission, and behave accordingly.  

In this study, we address the security requirement of an RBAC administered 
distributed environment. Our aim is to extend the strength of this standard access 
control mechanism by embedding a mathematical risk evaluation model in it. We 
propose a quantitative approach to assess risk. The risk model we put forward is novel 
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in the sense that, it dynamically measures the level of risk in granting an access 
request. The structure of RBAC model allows us the flexibility to place our risk 
evaluation scheme either in the middle of user to role assignments or in the middle of 
role to permission assignments.  

Mainly addressing the issue of security, our design introduces a risk adaptive 
access control mechanism (RAdAC) [13]. Several risk factors contribute to the 
calculation of risk in our design. We list these factors as user credentials, current user 
queries together with old queries and the utility expected by executing the query. 
Obviously, not every risk factor should have an equal share in the overall risk 
calculation. Hence, we assign different weight indices to each factor, depending on 
how important it is in the overall risk evaluation. At the end, our system sums the 
weighted contribution of each factor to yield a single risk value.  

While measuring risk, precision is very important. In order to obtain better 
precision, we incorporate data mining on the set of current queries and the role history 
log. For that, we implement anomaly (outlier) detection by using K-means clustering, 
which is an unsupervised classification algorithm to generate query clusters. We then 
analyze individual queries to determine how far a single query is from already formed 
clusters. Afterwards, we assign a risk value to each query, where the value assigned is 
linearly proportional to its distance from the nearest cluster. This, in turn, forms the 
risk value for the role history factor of the whole risk evaluation scheme. 

The rest of the paper is organized as follows: Section 2 gives background 
information about risk evaluation in distributed environments. Section 3 describes our 
risk measurement model in detail. Section 4 presents implementation details together 
with experimental results. The last section is Section 5, where conclusion and future 
work are presented. 

2   Background 

The In literature, various definitions of risk exist. Economists define it as a special 
type of uncertainty involving a variation from the expected outcome. They measure 
risk with the standard deviation of all probable outcomes [2]. From the computational 
point of view, risk is defined as a combination of likelihood and impact of an event. 
Trust is a tightly coupled concept with risk: a system with high risk has a low level of 
trust and vice versa. This indicates a tradeoff between risk and trust and these terms 
are sometimes used interchangeably. 

Several studies for trust evaluation have been conducted. The Secure Environments 
for Collaboration among Ubiquitous Roaming Entities (SECURE) project [3, 5, 6, 7, 
8, 9, 10, 17] is one of them. SECURE is a result of a comprehensive and ongoing 
work. With the tool they develop in the SECURE project, the authors try to form a 
general basis for trust and risk reasoning, as well as a security policy framework to be 
embedded into various applications. Regarding the above mentioned definition of 
risk, they base risk on two principals: One being the other principal’s trustworthiness 
(likelihood) and the other being outcome’s cost (impact), which can either be in the 
form of a benefit or loss. Their system represents the cost distribution as a cost-
Probability Density Function (PDF). SECURE is made up of three components: a risk 
evaluator, whose task is to assess the possible cost-PDFs using the trust information 
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generated by the trust calculator; a trust calculator which determines the likelihood of 
risk by considering the principal’s identity and other parameters of the action; and a 
request analyzer which combines the cost-PDFs of each outcome to determine 
whether the action will be taken or not.  

English et al. propose an extension to the SECURE project [English et al, 2003]. 
Forming the premises for risk assessment and interaction/collaboration decisions, 
their architecture dynamically analyzes trust in three levels as formation, evolution 
and exploitation. The sources of trust in their system are observations, recommend-
dations and reputation. They add a collaboration monitoring and evaluation that 
involves a feedback mechanism to the end of the decision making process.  

Another trust based study has been developed by Xiong and Liu [25]. Based on 
reputation, they develop a tool called PeerTrust for evaluating and comparing the 
trustworthiness of entities in a peer-to-peer decentralized network. Their approach is 
motivated by the idea that the trust models relying solely on other peers’ feedback is 
inadequate. For that, the authors add three factors to trust computation: (1) The 
amount of satisfaction, (2) the number of interactions and (3) the balance factor of 
trust, which is used to neutralize the potential of false feedback of peers.  

Abdul-Rahman and Hailes define a trust model derived from the sociological 
characteristics of trust [1]. They represent trust as a combination of experience 
(denoted by direct trust) and reputation (denoted as recommender trust). While direct 
trust relies on the agent whose trustworthiness is evaluated, the context and the degree 
of trustworthiness; recommender trust is based on another agent, context and the 
degree of trustworthiness.  

All of the aforementioned models merely base their work on trust, which is 
calculated by using other principals’ recommendations and system outcomes only. To 
the best of our knowledge, what is missing in prior research is an actual quantitative 
risk evaluation. Moreover, some of the models are implemented in non-RBAC 
administered environments. We propose a risk measurement model to fill this gap: 
our study introduces the notion of dynamic and adaptive risk measurement in RBAC 
employed distributed environments. As part of our work, we employ data mining to 
detect anomalies, i.e. queries with higher risk.  

Similar to our approach, Bertino et al. use data mining on RBAC administered 
databases. In [4], they employ data mining to detect intrusions. They use the Naïve 
Bayes algorithm, which is a supervised learning technique to classify queries as 
intrusions or not. On the other hand, we use an unsupervised learning algorithm (K-
means clustering) to detect outlier queries in our work. Our goal is not intrusion 
detection. 

Data mining algorithms have several other applications in the field of RBAC. 
Schlegelmich and Steffens’s study, where they introduce a role mining tool with a 
new approach, is an example of this [16]. Another implementation belongs to Vaidya 
et al. [21]. Their work introduces RoleMiner, an unsupervised role mining tool. 

3   Our Risk Evaluation Scheme 

In this paper, we address the risk management problem in an RBAC employed 
database and propose a mathematical model for measuring risk in such environments. 
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Since the amount of risk involved in granting an access request may depend on 
various reasons, we base our quantitative risk calculation on several risk factors. With 
respect to the fact that the management of RBAC is very flexible; users may be 
dynamically added to roles, even after permissions have been granted to roles. As a 
basis for our work, we consider a simple RBAC scenario where roles are assigned to 
users, permissions are assigned to roles and after that actual execution of transactions 
begin [11]. These relationships in the sample scenario are schematized in Figure 1. 

Users 

Task T1 

Roles Permissions 

Task T2 
… Task Tn 

 

Fig. 1. A Sample Scenario in RBAC Model  

In our work, we take advantage of this simple fact of RBAC: Users assigned to the 
same role are expected to behave similarly. This is because roles are already granted 
access to perform a predefined set of actions and users are supposed to adopt these 
roles. As long as users obey their role requirements, i.e. submit queries that are in 
accordance with their current roles, we simply assign reasonable risk levels to them. 
But when they behave in a manner that is contradictory to their role definitions, we 
detect this as a role misuse. In this case we label this behavior as an anomaly and 
assign high risk level to the current owner of this role. 

The problem of risk assessment for a database user is analogous to that of a 
potential customer who makes a credit card application to a bank. Just as the bank 
asks the prospective customer’s personal information before releasing a card, our 
system gets user credentials for identification purposes before granting the user’s 
access request. After getting personal information, the first thing the bank does is to 
search its history logs to find out previous records for the prospective customer. At 
this point, an important difference between this example and our work needs to be 
pointed: In the bank example, a global credit history is used to keep track of the 
customer histories. On the other hand, in our design, we use local log files to store 
user histories. Going back to the bank example, if record(s) with previous transactions 
for the prospective customer are found, then the bank investigates whether or not the 
customer well behaved (made credit payments on time) before. If no such records are 
found, then the bank refers to the statistics of similar applications made before and 
tries to find out how many of the brand new customers recorded good credit histories. 
Other than these, the bank can take its decision only on the user’s personal 
information, i.e. his credentials. At this point, the bank does one of the following: (1) 
It takes the risk and gives the customer the credit card, because it needs customers and 
money. (2) It simply refuses the application by just saying that he has insufficient 
credit history.  

Upon receiving an access request to the database, our risk model behaves like the 
bank: it first retrieves queries that are considered to be normal and categorizes them. 
The normal queries in our system are the ones that have been submitted to the 
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database before and have been granted. Then we get individual queries submitted by 
the current user and detect how far each of them is from the normal queries. We 
expect that users with the same role definitions behave similarly. If the individual 
query is not close enough to any of the normal role behaviors, we assign a high level 
of risk for this particular query of the current user. If the individual query is close to 
any of the normal role behaviors, then we assign a reasonable (low) risk level to him. 
By repeating the same risk assignment for each query of the user, we end up with an 
average overall risk value for that particular user. In case this risk level is too high, we 
most probably reject his access request. There is another option as immediately 
rejecting the user access, once a query submitted by him is detected to have too high 
risk. 

We design our risk evaluation mechanism such that, it can be embedded into the 
RBAC model. In the sample scenario given in Figure 1, our design can find a place to 
itself either in between user to role assignments, or in between role to permission 
assignments. In the former we measure the amount of risk involved in assigning a 
user to a particular role, and in the latter we measure the amount of risk in granting 
the access rights (permissions) to the pre-defined roles. For both cases, the 
implementation of our design does not change. The only thing that changes is the 
input and output to the system.  

We give a diagram of our design in Figure 2. In this design, we assume that our 
risk evaluation mechanism is placed into role to permission assignment phase of the 
RBAC model. As Figure 2 shows, there are four risk factors contributing to the 
overall risk calculation: User credentials, set of current user queries, role history logs, 
and the amount of utility expected by the execution of queries.  

Set of current 
user queries 

User credentials 

Expected utility 

Weighted Sum 

Risk Value 

Data 
Mining 

Risk Determination 

Database 
query logs 

SCQ

SC

H

C

U

 

Fig. 2. A Sample Scenario in RBAC Model 

To assign users to roles in a distributed environment, we need to collect user 
information, i.e. credentials to differentiate several users from each other. The other 
reason why we need credentials is to localize the place of connection. We collect each 
user’s credentials containing the information as user name, IP number of the 
connection, date and time he last connected, etc. In our design, we denote user 
credentials with C. 
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In order to determine the amount of risk a user carries, collecting his credentials is 
not enough. We further need to analyze the queries submitted by him. To fairly 
calculate the value of risk, we make our calculation over a set, other than individual 
queries (Q). We refer to the collection of queries submitted by the same user as the set 
of current user queries (denoted by SCQ). This is actually the history log for the current 
user. While handling the set of current user queries, we employ a sliding window 
mechanism. In practice, we can set different values for the window size. We repeated 
tests with different window sizes as 10, 20 and 30. Since the results we obtained did 
not change significantly, we set the smallest window size, i.e. 10 for our sample 
implementation. The size of the sliding window can easily be adjusted to observe our 
system’s response to changing window sizes. 

The contents of SCQ are in the form of SQL queries. In our implementation, we 
process the set of user queries twice: (1) to derive the nature of the query, which is 
obtained by tokenizing each query into the SQL command itself, relation name(s) and 
attribute name(s); (2) to compare it with the history of other user queries, i.e. role 
history.  

The third risk factor in our architecture is the role history log, which is in the same 
format as the set of current user queries. This is a large file containing several user 
queries and we denote it by H. While measuring risk, we use this simple idea: the best 
way to estimate the future is to observe the past. So, before assigning a risk value to 
the current user, we observe the database logs. This observation gives us an insight 
about how the current user’s behavior will be like in the future.  

The last component that we use for evaluating risk is the amount of expected utility 
assuming that the access request is granted. We denote the expected utility by U.  

So, given the set of risk factors, where C is the user credentials, SCQ is the set of 
current user queries (with Q denoting the individual elements of the set SCQ), H is the 
role history log and U is the expected utility, we suggest that the total expected return 
(E) would be an accurate indication of risk. We also propose representing the total 
expected return with a statistical utility function that we give in Equation 1: 

( ) QMPUP1E ×−×−=  (1) 

In the above equation, MQ is the estimated misuse cost that is incurred to the 
system by each individual query (Q) of the set of current queries (SCQ). This cost is 
the inherent cost that the system incurs depending from the type of the SQL query 
(e.g. SELECT, UPDATE, ADD, DELETE, etc.), the relation(s) (e.g. SALARY table, 
HOBBIES table, etc.), and the attribute(s) (e.g. SSN attribute, DATEOFBIRTH 
attribute, etc.). Moreover, in the above equation P denotes the probability of role 
misuse; its estimation is expressed by the conditional probability given in Equation 2: 

( )H SQ, C,|MisusePrP CQ ,=  (2) 

In the following subsections, we give a detailed explanation of each risk factor that 
we use in our model. 

3.1   User Credentials (C) 

In a distributed environment, where the number of users is usually very large, 
credentials are the essential elements to identify and differentiate users. User 
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credential(s) is the first risk factor that directly contributes to the calculation of the 
probability of role misuse (Equation 2). In the risk model we propose, user credentials 
are the identification components issued by participants in the database. We utilize 
user credentials to obtain user’s personal information, together with his IP address, 
and the information whether he has made an access request before or not. In our 
international business organization example, the user credentials are the company 
names that contribute to the coalition, and their country of origin. We may further 
request information about whether or not a request owner participated in a joint 
project before. Because, the existence of a former relationship can help us set the 
level of initial risk with higher precision. As for the current implementation, we 
assume that user credentials are input to the system via a secure and complete means: 
e.g. smart card, RFID, automated user entry, etc. 

3.2   Set of Current User Queries (SCQ) 

The second risk factor in the calculation of the probability of role misuse (Equation 2) 
is the set of current user queries, SCQ. This is actually the history log for the current 
user. In our system, the decision whether to grant or deny an access request relies on 
the estimated misuse cost (MQ) of each query (Q). This is what we call the nature of 
the query. In order to determine the nature of the query, we do the following: By 
analyzing a tokenized representation of the query, we determine the type of the query, 
i.e. whether an insertion, deletion, or modification and what critical relation(s) and/or 
attribute(s) it attempts to access. When we assign a risk value to the current query, the 
first step we execute is to check whether this user has submitted queries to the system 
before, i.e. we check the current user’s history logs. For such purpose, we collect 
queries submitted by the same user under a group; we call the set of current user 
queries (SCQ) and treat it using a sliding window mechanism. Each time we calculate 
the risk value for the current query, we move the sliding window to process the new 
query for the same user. In case the user has no history yet, i.e. he is a first time user, 
then SCQ contains a single query. So, as an unknown user, we assign the highest level 
of initial risk to his query. Eventually, if he submits new queries, we update his query 
risk level as he builds up his own history in our system. This update mechanism is 
what makes our risk calculation scheme dynamic and adaptive.  

For the ongoing international organization example, the probable set of current 
user queries can include the following questions: “How much money does country 
A/B put in the joint project?”, “What is the product that we will produce in the new 
factory?”, “In which city in country C we will set up our new factory?”, “What is the 
date we will start functioning the factory?”, etc. 

The order of processing for SCQ is after we get the user’s credentials and already 
assigned a credentials risk to him. Even if the user has low credentials risk, SCQ may 
still contain one or more queries that should be detected as highly risky. For example, 
a user from country A (so, supposedly a legitimate user and hence carries low risk in 
terms of credentials) may repeatedly ask questions as “What is the name and SSN of 
the general manager for the new factory?”, “What is the name and SSN of the account 
manager for the new factory?”, “What is the name and SSN of the director of the 
human resources department for the new factory?”, etc. These insistent queries to 
reveal the identity of employees should attract suspicion and our risk model assigns 
high risk to the owner of such queries.  
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In order to compute the overall risk value for SCQ, we need to assign an estimated 
misuse cost MQ (Equation 1) to each individual query Q of SCQ. We could assume that 
MQ is a fixed value input to the system with each query submission. Instead, we 
provide a better estimation that will determine MQ in an automated and more precise 
manner. For that, we assign predetermined weight indices to each SQL command, to 
each relation, as well as to each attribute in the database. The decision to assign which 
weight to each attribute and each relation is totally domain specific. In general, we 
deliberately assign  higher weights for critical attributes and tables. For example, a 
patient relation is more critical than hospital facilities relation. So, the attributes in the 
former are assigned higher weights than that of the latter. Afterwards, we tokenize 
each query to separate SQL commands, relation names and attribute names. Then, we 
multiply each token with its corresponding weight index and eventually sum up all 
multiplications to yield the estimated misuse cost value for the query itself. Basically, 
we use Equation 3 for the calculation of MQ, where SQL denotes the SQL command, 

iRw denotes the risk value assigned to the ith relation Ri, and 
jiAw

,
denotes the risk 

value assigned to the jth attribute of the ith relation.  
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The queries in our system are in the form of SQL queries, consisting of basic or 
compound SQL commands. To make sure that we completely include the whole set of 
SQL commands, we used a comprehensive list of them and assigned a predetermined 
weight index to each. While assigning the weight indices, we take the amount and 
type of information a command is querying into consideration. For example, the SQL 
command SELECT is assigned a less weight index than that of the UPDATE or ADD 
commands in our design, because SELECT only reads data but ADD and UPDATE 
commands modify them. We repeat the risk weight assignment process for each 
relation and attribute in the database. To obtain a reliable weight assignment, a 
thorough analysis of the whole database is needed. For example, in our sample 
international organization database, querying a table containing employee business 
trips is less risky than querying a table storing information about employee 
performances. For this reason, we assign a lower risk weight to the business trips 
table than that of the employee performance table.  

Likewise, for each attribute in the database, we determine how risky it would be to 
reveal (or modify) that field and accordingly assign a weight index to it. Once the 
weight assignment is complete, we can reuse it for future evaluations.   

Syntactically, the SQL queries are made up of multiple clauses. A SELECT query, 
for example, has three clauses: 

SELECT attribute name(s) 
FROM relation name(s) 
WHERE condition(s) 

So, for every SELECT command, we calculate the risk value of each clause by 
multiplying each weight index. Then, we sum the risk value of each clause to 
calculate the risk for the whole SQL command (Equation 3). We repeat the same 
procedure for calculating the risk values for other SQL commands. 
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3.2.1   Query Representations 
One of the inputs to our system is represented by the queries submitted by users. The 
queries can either belong to the current user, or to earlier users. Independently of its 
owner, a query is in the form of SQL statements. This feature helps us represent 
database queries in a standard, and more importantly in a shorter manner. We employ 
a query representation scheme having three different levels of granularity, which is 
similar to that of Bertino et al.’s in [4]. In the following three subsections we define 
these query representation schemes in detail.   

3.2.2.1   Coarse Grain. This representation has the simplest level of granularity. 
Given a standard SQL query, it transforms it to the new format as: This representation 
has the simplest level of granularity. Given a standard SQL query, it transforms it to 
the new format as: 
                                                                                         , where a given SQL 
command is symbolized with a three-component scheme: (1) the name of the SQL 
command, (2) the number of relations involved in the command and (3) the count of 
attributes involved in the command. 

When this scheme is incorporated to represent input queries, we use Euclidean 
distance or Hamming distance to calculate distances from cluster centroids. Euclidean 
distance is a general metric for measuring the distance between two points in a multi-
planar space. For points A=(a1, a2, .., an) and B=(b1, b2, …, bn), the Euclidean distance 
between them is calculated as: 

( )∑
=

−=
n

i
iiEuclidean bad

1

2  (4) 

We use Euclidean distance for coarse grain and medium grain query represent-
tations. Since the fine grain representation of queries is simply a binary represent-
tation, we use Hamming distance to calculate the distances from cluster centroids for 
such query representations. In essence, Hamming distance is a special form of the 
Euclidean distance and allows faster calculation. 

3.2.1.2   Medium Grain. This representation has finer granularity as compared to the 
coarse grain technique. It represents SQL queries in the following format:  
                                                               where the first component is the name of the 
SQL command and the second component AttributeCounter[i] contains the number of 
attributes of the ith relation in the SQL command. This is a modified representation of 
Bertino et al.’s corresponding (m-triplet) format [4]. In their work, the authors 
symbolize the SQL command as a triplet by adding a binary bit vector of size equal to 
the count of relations in the database. We simplify this notation by removing the bit 
vector. Because, the attribute counter itself already signifies how many relations exist 
in the database. 

As the case with coarse grain, we use the Euclidean distance with medium 
granularity to calculate distances from cluster centroids. 

 Counter Attribute Counter lationRe Command SQL ,,

[ ]   , CounterAttributeCommandSQL
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3.2.1.3   Fine Grain. As the name implies, this is the finest level of granularity in our 
implementation. This granularity represents a given SQL command with the new 
format as: 

 
 

where the second component is a binary matrix with the following rule:  

[ ][ ]
⎩
⎨
⎧

=
otherwise 

accessed is relation ith the of attribute jth if 
jiatrixAttributeM

0

1
 

This representation has a modification to the f-triplet mode of Bertino et al.’s [4]. 
We remove the binary bit vector of size equal to the count of relations in the database 
due to the same reason given in subsection 3.2.1.2. 

Since fine grain representation contains the AtrributeMatrix in a binary format, we 
use the Hamming distance metric to calculate distances from cluster centroids. This 
method is easier to implement and yields better performance in terms of speed on a 
binary matrix.  

Throughout our implementation, we employ each of the above mentioned 
granularities to represent the set of current user queries as well as role history queries 
on real world database. As part of the application, we measure how successful each 
granularity is in determining the query clusters. Besides, we calculate the distance of 
each individual query belonging to the current user to each cluster. We then compare 
results to determine which granularity scheme best resembles the real world.  
Section 4 gives the experimental results on the real data set. 

3.3   Role History Log (H) 

In Equation 2, the third risk factor that is used to compute the probability of role 
misuse is the role history log (H). It consists of individual user queries that were 
submitted before. An important property of the role history contents is that, they are 
the queries which were granted access before. The only possible way for a query to be 
included into the history log is to obey the predefined role definitions. So, the history 
contains queries with considerably lower level of overall risk, what we call as normal 
queries.  

We make use of data mining to generate clusters out of role history logs (H), so 
that we categorize what type of behaviors users had before for the same role. Then, 
we refer to the current user’s submissions and obtain individual queries (Q) from the 
set of current user queries (SCQ) to calculate their distances from the role history 
clusters. In this manner, we determine how different the current user behaves from 
previous users. At the end of assigning a risk value for the current query, we add it to 
the role history log. This is another aspect that makes our design dynamic and 
adaptive. 

For our ongoing international organization example, imagine that countries A, B 
and C had established another coalition –say coalition CBA- before. And assume that 
companies from countries A, B an C have had such queries recorded before into the 
history logs as: “What will be the name of our product?”, “How many people will be 
working in our factory?”, “How much money does country A/B put in the joint 

[ ][ ] Matrix Attribute Command SQL ,
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project?”, etc. We see that the question “How much money does country A/B put in 
the joint project?” in role history is exactly the same as the one asked in by the current 
user (Section 3.2.). So, by analyzing each individual query in set SCQ, we determine if 
they are in “acceptable” distance from history clusters or not. Afterwards, we take an 
average of the distances to assign a single value indicating the risk contribution for 
the whole set SCQ for the current user. 

3.3.1   Using Data Mining 
Data mining is applied to accomplish two fundamental types of tasks: The former 
type is called predictive and is used to estimate the value of a particular attribute 
based on other attributes. The latter type is called descriptive and it aims at deriving 
patterns so as to predict future behaviors [19, 24]. In our work, we employ descriptive 
data mining. More specifically, we utilize the K-means clustering for anomaly 
detection. It helps us form clusters to categorize historical data and then to determine 
how far (or close) the recent data to each cluster. In K-means clustering, the mean of a 
group of points determines a cluster centroid. By calculating centroids for each group, 
we get the cluster centers.  

Choosing the parameter k is the key point for the success of K-means clustering 
algorithm. To determine the best possible k, we use the v-fold cross validation 
technique [14, 22]. Since the value of k is not known a priori, we first divide the 
overall data set into v different segments (folds).  We use v-1 segments as the training 
set and the vth segment as the application set. We next apply the analysis to the v-1 
segments and then apply the results to the vth segment. By repeating this procedure v 
times for each fold, we calculate an overall average and set the value of clustering 
parameter k accordingly. While doing this, we use the distance of each cluster from 
each other as the decision criteria. In our work, we set v=10 and l=9 for determining 
k=5. 

In our work, we utilize Weka knowledge analysis tool for implementing the K-
means clustering algorithm [23]. We derive query clusters from role history logs. By 
applying v-fold cross validation, we determine the optimum k value for the number of 
clusters, instead of Weka’s default value of k=2.  

K-means clustering distributes points into clusters in a two-dimensional space. 
Several distance metrics exist in clustering to calculate distances from cluster 
centroids: Euclidean, squared Euclidean, city-block (Manhattan), Chebychev, power 
distance and performance disagreement. Among them, we choose the Euclidean 
distance because it considers both dimensions and neutralizes their effect by first 
squaring the distance, then by taking the square root of it. 

3.4   Expected Utility (U) 

An important risk factor that contributes to the calculation of the total expected return 
(Equation 1) in our system is the expected utility (U). In the international organization 
example, the expected utility is the profit that is expected by setting up the factory in 
country C. Let’s assume that the city in country C where the new factory is to be 
founded is one of the most unsafe cities in this country. So, setting up the new 
business there incurs a high risk regarding factory workers’ security. On the other 
hand, this city has very fertile soil to grow the major material that is needed for the 
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product –say product X- that will be produced in that factory. Then, the coalition 
ABC may still take the risk and set up the factory in country C just because the 
expected utility is very high. 

During implementation, we assume that the expected utility for the current query is 
given as a fixed value. 

4   Experimental Results 

We run our program on a real world data set [4]. In our current implementation, we 
incorporate our risk model to calculate the level of risk in “role to permission” 
assignments in RBAC. In our risk model, all the factors except the misuse probability 
(P) are given as parameters to our system. Therefore, in the following subsections, we 
focus only on measuring P in our experimentations.  

4.1   Data Set Definition 

To implement our design, we used a real data set containing SQL queries submitted in 
a database of a medical clinic [4]. The database consists of 130 relations with totally 
1201 attributes. The query log has 7588 instances that were submitted by users 
belonging to one of 8 different types of roles in the database.   

4.2   Implementation 

We implemented three different granularities as coarse, medium and fine on the data 
set. In order to determine the value of k for K-means clustering, we applied 10-fold 
cross-validation. This work yielded the best results for k=5. Setting k=5 in K-means 
algorithm, we first determined the cluster centroids for each role. Then, we ran our 
scheme on individual user queries in each role in a sliding window basis to calculate 
the distance of each current user query from each cluster centroid. We anticipate that 
set of current user queries are close to the clusters belonging to his actual role 
definitions, but with different role definitions, we expect our design to yield longer 
distances to the cluster centroids.  

While determining the level of risk, we make use of the probability that a user 
belonging to Role X behaves as if he is a user belonging to Role Y. We call this the 
role misuse probability (P), whose formula is given in Equation 1. In an ideal system, 
such role intersections are expected to be very few for security purposes. This 
requires the role misuse probability to be as low as possible. If this probability is high, 
then we assign a high risk value for the query. The calculation of the misuse 
probability involves the normal probability distribution of the minimum distance to 
the cluster centroids that we obtained earlier with K-means clustering.  We set 

( )QdP φ−= 1 , where  is the misuse probability, φ  is the probability density function 

(PDF) of normal distribution, and 
Qd is the distance value for the query Q to its 

nearest cluster centroid. The normal distribution PDF computes ( )Qdφ  by using the 

mean (μ) and standard deviation (σ) values. We repeat the risk calculation steps for 
each query belonging to a single user to compute the overall risk for him. Once 
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parameters are set, the risk evaluation becomes a repetitive routine and can be 
accomplished in a straightforward and easy way. 

The database we used in our experiments is considerably large with 130 relations 
and 1201 attributes. So, employing coarse grain representation involves two columns 
only, while medium grain involves as many columns as the number of relations (130) 
and fine grain representation involves as many columns as the number of attributes 
(1201) for the current application. Handling so many columns for misuse probability 
calculation is computationally very expensive. The runtime for medium grain and fine 
grain approaches were in the order of several ten minutes. For this reason, we used 
coarse grain representation to calculate distances and the misuse probabilities in the 
ongoing experiments.  

We conducted two sets of experiments for the calculation and interpretation of 
misuse probabilities while setting Role 0 as the base role for both cases. In the former, 
we calculated the distances of all queries in roles other than Role 0 to the base role. In 
the latter, we conducted the same experiments to calculate the distances of queries in 
Role 0 to the base role, i.e. Role 0. The role group that contains the largest number of 
queries is Role 0 for the current data set. For this reason, we set Role 0 as the base 
role in our experiments. The reason why we combined the queries belonging to all 
role groups except for Role 0 is that, most of the individual role groups have very few 
(even single) queries. So, the base role Role 0 has 6170 queries and the rest of the role 
groups 1, 2, 3, 4, 5, 6, and 7 have 4+20+104+1+156+10+1123=1418 queries in total. 

In the first part of the implementation, we first formed the mixture group of queries 
from role groups 1, 2, 3, 4, 5, 6 and 7. To obtain misuse probabilities, we first 
implemented K-means clustering to find the cluster centroids in the base role, and 
then we used the distance of each query (

Qd ) to calculate the average distance to the 

nearest centroid in Role 0 (μ) and its standard deviation (σ) for this role. Assuming 
that the queries from Role 0 show a normal pattern, we used the population mean (μ) 
and standard deviation (σ) for the calculation of the normal distribution probability, 
where the population is the whole set of query distances in Role 0. Table 1 lists the 
results we obtained.  

Table 1. Misuse probabilities of all queries with base role=Role 0 

  a.) from Roles 1, 2, 3, 4, 5, 6, 7            b.) from Role 0 

  

Probability Group Distance (dQ) Probability (1-Φ(dQ))

AllRolesExcept0_g1 0.23 0.8809
AllRolesExcept0_g2 0.26 0.8801
AllRolesExcept0_g3 0.74 0.8690
AllRolesExcept0_g4 0.77 0.8685
AllRolesExcept0_g5 1.01 0.8643
AllRolesExcept0_g6 1.26 0.8607
AllRolesExcept0_g7 1.74 0.8570
AllRolesExcept0_g8 1.90 0.8567
AllRolesExcept0_g9 2.10 0.8570
AllRolesExcept0_g10 2.33 0.8583
AllRolesExcept0_g11 2.74 0.8628
AllRolesExcept0_g12 2.90 0.8652
AllRolesExcept0_g13 2.92 0.8656
AllRolesExcept0_g14 4.02 0.8921
AllRolesExcept0_g15 6.03 0.9518
AllRolesExcept0_g16 6.40 0.9606
AllRolesExcept0_g17 8.38 0.9903
AllRolesExcept0_g18 9.68 0.9970
AllRolesExcept0_g19 10.10 0.9981             

Probability Group Distance (dQ) Probability (1-Φ(dQ))

Role0_g1 0.23 0.8959
Role0_g2 0.26 0.8953
Role0_g3 0.74 0.8860
Role0_g4 0.77 0.8855
Role0_g5 1.26 0.8784
Role0_g6 1.34 0.8774
Role0_g7 1.59 0.8751
Role0_g8 1.74 0.8740
Role0_g9 1.90 0.8732

Role0_g10 2.01 0.8728
Role0_g11 2.33 0.8726
Role0_g12 2.74 0.8742
Role0_g13 2.90 0.8754
Role0_g14 2.92 0.8756
Role0_g15 4.02 0.8919
Role0_g16 6.03 0.9392
Role0_g17 6.40 0.9476
Role0_g18 8.38 0.9816
Role0_g19 9.68 0.9925
Role0_g20 10.10 0.9947
Role0_g21 17.01 ~1.0000
Role0_g22 20.00 ~1.0000  
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In Table 1a, we list the misuse probability values for different distance groups 
together with each group’s distance value. According to the table, there are 19 such 
distance groups based on the values. When we look at the probability values, we see 
that as the distance gets higher, the probability value increases, as was expected. 

We repeated the same experiment to measure the misuse probabilities of queries in 
Role 0 to itself, i.e. to Role 0, and we list them in Table 1b. 

Our expectation was that, the misuse probabilities for Role 0 to Role 0 (Table 1b) 
would be much lower than that of all other roles to Role 0 (Table 1a). Results show 
that the misuse probabilities for Role 0 to Role 0 are still very high, being very close 
the values listed in Table 1a. The reason for that is the occurrence of the same or 
similar queries in Role 0, as well as in other roles in the data set. For example, the 
SQL query in Role 0 as: 

 
SELECT  check_in_date, planed_start_time, contract_no, treatment_id, 
treatment_consultant, branch_id  
FROM treatment_schedule  
WHERE customer_id = '100300199' and treatment_status = 1  
ORDER BY check_in_date desc; 

occurs very similarly in Role 1 as: 
SELECT  check_in_date, planed_start_time, contract_no, treatment_id, 
treatment_consultant, branch_id  
FROM treatment_schedule  
WHERE customer_id = '100200072' and treatment_status = 1  
ORDER BY check_in_date desc; 

and in Role 2 as: 
SELECT  check_in_date, planed_start_time, contract_no, treatment_id, 
treatment_consultant, branch_id  
FROM treatment_schedule  
WHERE customer_id = '100201056' and treatment_status = 1  
ORDER BY check_in_date desc; 

and in Role 7 as: 
SELECT  check_in_date, planed_start_time, contract_no, treatment_id, 
treatment_consultant, branch_id  
FROM treatment_schedule  
WHERE customer_id = '100300499' and treatment_status = 1  
ORDER BY check_in_date desc; 

The only difference in the four queries listed above is the customer_id number that 
is queried, whereas for the rest the queries are the same. So, the representation of each 
query in different role groups would be exactly the same in coarse, medium and fine 
grain, respectively. Likewise, the SQL query in Role 0 as: 

SELECT  *    
FROM contract_record   
WHERE contract_no = 'm2810' 

and another query in Role 0 as: 
SELECT  contract_date, contract_no, outstanding_balance, active_status   
FROM contract_record   
WHERE customer_id= '100201496' and  contract_type =0 and (active_status 
= 0 or outstanding_balance <> 0) and active_status <> 2   
ORDER BY contract_date desc; 

occurs in Role 7 as: 
SELECT  *    
FROM contract_record   
WHERE contract_no = 't4596'; 
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and again in Role 7 as: 
SELECT  contract_date, contract_no, outstanding_balance, active_status   
FROM contract_record   
WHERE customer_id= '100300951' and  contract_type =0 and (active_status 
= 0 or outstanding_balance <> 0) and active_status <> 2   
ORDER BY contract_date desc; 

 
multiple times. There are several such occurrences that would eventually lead to the 
same query representation for different roles in the data set. Consequently, a more 
precise representation for the queries may be needed for a better performance of our 
risk model.   

According to the risk model we introduce in order to lower the level of risk, the 
total expected return (E) of Equation 1 should be greater than 0. Thus, the inequality 
( )

U

M

P

P Q>−1  must hold. Our experimental results in Tables 1a and 1b indicate that if 

the role definitions have significant overlap, we end up with high misuse probabilities 
for all roles. Based on the calculated misuse probabilities, the inequality above 
implies that the expected utility (U) must be at least 7 times larger than the misuse 
cost (MQ) on the average to make the total expected return (E) positive.        

As the experimental work shows the role boundaries are not distinct in the real 
world data set we use, which leads to role overlapping. Apparently, the distribution of 
queries among roles in this data set is not well designed. Additionally, query 
distribution among roles is significantly uneven. With an automatically generated 
synthetic data set, one can most probably obtain more reasonable results with the risk 
evaluation model we propose. 

5   Conclusions and Future Work 

In this paper we propose a quantitative model to measure risk of role misuse in RBAC 
employed distributed environments. Our design is an extension to the well known 
standard access control model called RBAC. Even if RBAC provides a 
comprehensive infrastructure, it does not consider the amount of risk involved in 
granting access requests. This risk is incurred by role misuse. We design and 
implement a risk model to complement RBAC for enhanced access control. Our risk 
calculation scheme is based on a statistical utility function. For that, it uses the risk 
factors as user credentials, set of current user queries, role history logs and expected 
utility. Our architecture is flexible enough to be placed in user to role or role to 
permission assignments in the RBAC model.  

To represent queries we incorporated three different granularities and compared 
their performances. Due to the large amount of relations and attributes in the data set, 
the coarse grain approach yielded the best results. We also utilized data mining to find 
out different user clusters based on role history. We then determined how far each 
individual query of the current user is from these clusters.  

Implementation of our scheme on a real data set showed that there are two main 
sources of risk for a distributed database environment: (1) the inherent risk incurred 
by user credentials, (2) the risk caused by role misuse. It is considerably easier to 
manage the former case because role assignments are possible only after ensuring that 
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the user credentials comply with the database requirements. In the latter, we can 
detect role misuse only when role assignments are already made, which is usually  
too late.  

Since the K-means clustering results did not yield the expected results in terms of 
query classification among roles, we suggest that the risk management scheme should 
focus more on the determination of the nature of query that we proposed in  
Section 3.2. With regards to the experimental work, we see that the most part of the 
risk is sourced from the nature of the query, i.e. how many attributes a query attempts 
to access and what are these attributes. So, to measure the risk properly we need to 
tokenize and analyze user queries individually. 

As part of a broader solution, we also suggest minimizing role definitions in the 
database, if database intervention is possible. In that case, while we keep the number 
of tasks constant, we increase the number of roles in the system to accomplish these 
tasks. This, in turn, means assigning multiple roles to individual users. Also, we 
propose employing query templates in the database to prevent overlapping roles. 
Considering the two main sources of risk, we need to take precautions for each 
source. For credentials, the risk evaluation should consider when, where, and how 
frequently a user is connecting for sending queries. So, we need to bring strict 
controls over credentials. For the role misuse, we should analyze the attributes that 
each role can access. 

To obtain better results, we will search data sets that will fulfill the requirements of 
our design. Such a data set needs to have well defined and differentiated roles and 
distinct queries that are evenly distributed among roles. If we cannot find a real data 
set as requested, then we will generate synthetic data to test our system or reorganize 
the existing data set. Furthermore, we will employ K-means clustering for other 
values of k (e.g. k+1, k+2, etc.) than 5. We will also search for other data mining 
techniques (e.g. EM algorithm) to cluster the query histories. By comparing the new 
results with our current implementation, we will determine the optimum data mining 
algorithm. We will also investigate alternative ways of representing the database 
queries. We plan on expanding our work to determine what to do after risk evaluation. 
Our preliminary suggestion is to employ role encryption if the risk is too high. By 
encrypting the role information, we expect to strengthen the accountability of the 
system, hence to ensure better security. 
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