
R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part II, LNCS 4804, pp. 1548–1566, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Managing Risks in RBAC Employed Distributed
Environments

Ebru Celikel1, Murat Kantarcioglu1, Bhavani Thuraisingham1, and Elisa Bertino2

1 University of Texas at Dallas Richardson, TX 75083 USA
2 Purdue University West Lafayette, IN 47907 USA

{ebru.celikel,muratk,bhavani.thuraisingham}@utdallas.edu,
bertino@cs.purdue.edu

Abstract. Role Based Access Control (RBAC) has been introduced in an effort
to facilitate authorization in database systems. It introduces roles as a new layer
in between users and permissions. This not only provides a well maintained
access granting mechanism, but also alleviates the burden to manage multiple
users. While providing comprehensive access control, current RBAC models
and systems do not take into consideration the possible risks that can be
incurred with role misuse. In distributed environments a large number of users
are a very common case, and a considerable number of them are first time
users. This fact magnifies the need to measure risk before and after granting an
access. We investigate the means of managing risks in RBAC employed
distributed environments and introduce a probability based novel risk model.
Based on each role, we use information about user credentials, current user
queries, role history log and expected utility to calculate the overall risk. By
executing data mining on query logs, our scheme generates normal query
clusters. It then assigns different risk levels to individual queries, depending on
how far they are from the normal clusters. We employ three types of granularity
to represent queries in our architecture. We present experimental results on real
data sets and compare the performances of the three granularity levels.

Keywords: RBAC, security, access control, risk modeling, data mining.

1 Introduction

Today more than ever, data sharing among a variety of users from different domains
and environments is a key requirement. Data sharing is crucial for decision making
processes in that it enables individuals to take decisions based on complete and
accurate information. Data sharing, however, has to be carried out by safeguarding
data confidentiality through the use of an access control mechanism. To provide
adequate access control, database systems thus necessitate a security tool combining
together policies, technologies and people [18]. Unfortunately, security requirements
of a database are usually contradictory to the user requirements: On one hand security
forces us to have strict limitations over permissions; on the other hand, users demand
more permission to accomplish their tasks [16]. Furthermore, in a typical distributed
environment, users tend to establish coalitions for data sharing purposes. Such an

 Managing Risks in RBAC Employed Distributed Environments 1549

environment is typically not closed and its users are very often at different locations.
Moreover, access control must not affect the performance of the query processing
engine, security [20] and other components of the database system.

Role Based Access Control (RBAC) model [11, 15], is a practical solution to the
problems listed above. The introduction of roles as an intermediate level between
users and permissions makes user management easier. The use of roles in RBAC also
allows one to determine who can take what actions on which data [12]. In real world,
we expect role and permission associations to change less frequently than user and
permission associations. This is because, organizations usually have a well defined set
of privileges for each role and they stay stable; whereas users can change positions,
hence require dynamic allocation of permissions. By its ability to predefine role and
permission relationships, RBAC supports the three fundamental security principles as
the least privilege, separation of duties and data abstraction [26]. All these features
make RBAC feasible and easy to use.

In RBAC model, credentials are used to determine legitimate users and thereafter
users are assigned to roles. But RBAC does not consider the risk in this process.
When we look at the potential sources of risk in an RBAC administered database, we
see that mainly two sources of risk contribute to the overall risk evaluation: one is the
inherent risk that is incurred by user credentials such as the location of connection, if
the user is the first time user or not, etc., and the other is the risk resulting by role
misuse or abuse. By role misuse we refer to the unintentional incorrect use of a role,
whereas by role abuse we refer to the intentional incorrect use. For the sake of
simplicity, we denote both intentional and unintentional cases with the same phrase as
role misuse throughout the paper. Given user credentials, RBAC perfectly handles the
risk incurred by credentials: It eliminates the illegal access attempts by totally
rejecting them. Likewise, in case of access requests exceeding the actual role
definitions, RBAC rejects these attempts. Still, there will be users attempting to
exploit their already assigned permissions by using them over and over again.
Unfortunately, RBAC does not consider this type of role misuse. So, in that sense
every access attempt carries a potential risk.

In this paper, we address the security of RBAC employed distributed databases by
focusing on the risk management in such systems. Motivated by the strong and
flexible access control facility that RBAC provides, we introduce an extension to it.
We design and implement a mathematical model to measure risk, so that RBAC
provides improved security for access control. We know that several factors such as
immature and improper enforcement of constraints, delegation processes and/or role
hierarchy construction contribute to the risk in databases. We assume that these
factors are all mitigated with comprehensive risk management and we only focus on
risks caused by user credentials and misuse.

As a motivating example, assume that several companies from various countries
come together under an international organization for business purposes. Their aim is
to combine their resources to conduct business all around the world. The reason for
that is two fold: First, companies cannot realize projects individually with limited
resources in their own countries, and second sometimes it is economically more
feasible to make an investment with partners in another country. The resources each
country has are different: for instance some countries have very fertile soil for good
plantation, some have money, others are good at technology and equipment, etc. To

1550 E. Celikel et al.

conduct joint projects, two or more of the member countries initiate a coalition.
During the lifetime of a coalition, the participating countries need to establish and
maintain mutual trust for each other. Imagine that countries A, B and C come together
to start up a new factory in country C. Let’s call this coalition as coalition ABC. As
long as this coalition is active, the participating companies from countries A, B and C
will be exchanging information about several topics as the amount of money they will
invest for the new factory, the details about particular resources each country will
provide, the physical location of the factory to be settled in country C, etc. Even some
other countries, say country D that is not a participating country in the coalition ABC,
but a member of the organization, may request information from participants about
this coalition. At this point, countries A, B and C may not trust each other completely.
But again they need to communicate and it is very important for them to keep their
project secret, so that no other country steals the idea before they start the new
factory. While exchanging information, countries A, B, C –and also country D in case
it communicates with the coalition- require a secure access control mechanism to
identify users who would attempt to misuse the permissions granted to them by their
role definitions. For example, assume that a human resources personnel from country
A has permission to ask salary information for employees and he asks these questions:
“What is the salary of the general manager of the new factory?”, “What is the salary
of the account manager of the new factory?”, “What is the salary of human resources
manager of the new factory?” etc. to reveal the salaries of the whole employers in the
new factory. Even if he is a legal user, submitting multiple salary questions to the
system should indicate a suspicious situation. In that sense, every communication in
this business coalition incurs a potential risk.

Assume that RBAC is employed to detect unauthorized access attempts, and
authorized but still illegal requests that exceed the actual permissions in this sample
database. While facilitating access control in multiple aspects, RBAC remains
inadequate in detecting the potential risk of users’ misuse. To improve the strength of
RBAC, we propose a quantitative model to evaluate risk in such a database.
Throughout the paper, we use the international business organization example for
further reference.

1.1 Our Contribution

RBAC is an effective tool to protect information assets from internal and external
threats [18]. It gets user credentials to assign legal users to roles. While doing that,
RBAC provides flawless control over users in two ways: It totally rejects users having
credentials that do not comply with the role requirements, as well as user attempts that
ask for more than what their role actually allows. Yet, employing RBAC alone is not
enough to eliminate security threats. Even if roles are well defined, every access
request carries a potential risk of role misuse. To provide a comprehensive security,
we need to analyze queries to measure the risk that is incurred to the system by their
submission, and behave accordingly.

In this study, we address the security requirement of an RBAC administered
distributed environment. Our aim is to extend the strength of this standard access
control mechanism by embedding a mathematical risk evaluation model in it. We
propose a quantitative approach to assess risk. The risk model we put forward is novel

 Managing Risks in RBAC Employed Distributed Environments 1551

in the sense that, it dynamically measures the level of risk in granting an access
request. The structure of RBAC model allows us the flexibility to place our risk
evaluation scheme either in the middle of user to role assignments or in the middle of
role to permission assignments.

Mainly addressing the issue of security, our design introduces a risk adaptive
access control mechanism (RAdAC) [13]. Several risk factors contribute to the
calculation of risk in our design. We list these factors as user credentials, current user
queries together with old queries and the utility expected by executing the query.
Obviously, not every risk factor should have an equal share in the overall risk
calculation. Hence, we assign different weight indices to each factor, depending on
how important it is in the overall risk evaluation. At the end, our system sums the
weighted contribution of each factor to yield a single risk value.

While measuring risk, precision is very important. In order to obtain better
precision, we incorporate data mining on the set of current queries and the role history
log. For that, we implement anomaly (outlier) detection by using K-means clustering,
which is an unsupervised classification algorithm to generate query clusters. We then
analyze individual queries to determine how far a single query is from already formed
clusters. Afterwards, we assign a risk value to each query, where the value assigned is
linearly proportional to its distance from the nearest cluster. This, in turn, forms the
risk value for the role history factor of the whole risk evaluation scheme.

The rest of the paper is organized as follows: Section 2 gives background
information about risk evaluation in distributed environments. Section 3 describes our
risk measurement model in detail. Section 4 presents implementation details together
with experimental results. The last section is Section 5, where conclusion and future
work are presented.

2 Background

The In literature, various definitions of risk exist. Economists define it as a special
type of uncertainty involving a variation from the expected outcome. They measure
risk with the standard deviation of all probable outcomes [2]. From the computational
point of view, risk is defined as a combination of likelihood and impact of an event.
Trust is a tightly coupled concept with risk: a system with high risk has a low level of
trust and vice versa. This indicates a tradeoff between risk and trust and these terms
are sometimes used interchangeably.

Several studies for trust evaluation have been conducted. The Secure Environments
for Collaboration among Ubiquitous Roaming Entities (SECURE) project [3, 5, 6, 7,
8, 9, 10, 17] is one of them. SECURE is a result of a comprehensive and ongoing
work. With the tool they develop in the SECURE project, the authors try to form a
general basis for trust and risk reasoning, as well as a security policy framework to be
embedded into various applications. Regarding the above mentioned definition of
risk, they base risk on two principals: One being the other principal’s trustworthiness
(likelihood) and the other being outcome’s cost (impact), which can either be in the
form of a benefit or loss. Their system represents the cost distribution as a cost-
Probability Density Function (PDF). SECURE is made up of three components: a risk
evaluator, whose task is to assess the possible cost-PDFs using the trust information

1552 E. Celikel et al.

generated by the trust calculator; a trust calculator which determines the likelihood of
risk by considering the principal’s identity and other parameters of the action; and a
request analyzer which combines the cost-PDFs of each outcome to determine
whether the action will be taken or not.

English et al. propose an extension to the SECURE project [English et al, 2003].
Forming the premises for risk assessment and interaction/collaboration decisions,
their architecture dynamically analyzes trust in three levels as formation, evolution
and exploitation. The sources of trust in their system are observations, recommend-
dations and reputation. They add a collaboration monitoring and evaluation that
involves a feedback mechanism to the end of the decision making process.

Another trust based study has been developed by Xiong and Liu [25]. Based on
reputation, they develop a tool called PeerTrust for evaluating and comparing the
trustworthiness of entities in a peer-to-peer decentralized network. Their approach is
motivated by the idea that the trust models relying solely on other peers’ feedback is
inadequate. For that, the authors add three factors to trust computation: (1) The
amount of satisfaction, (2) the number of interactions and (3) the balance factor of
trust, which is used to neutralize the potential of false feedback of peers.

Abdul-Rahman and Hailes define a trust model derived from the sociological
characteristics of trust [1]. They represent trust as a combination of experience
(denoted by direct trust) and reputation (denoted as recommender trust). While direct
trust relies on the agent whose trustworthiness is evaluated, the context and the degree
of trustworthiness; recommender trust is based on another agent, context and the
degree of trustworthiness.

All of the aforementioned models merely base their work on trust, which is
calculated by using other principals’ recommendations and system outcomes only. To
the best of our knowledge, what is missing in prior research is an actual quantitative
risk evaluation. Moreover, some of the models are implemented in non-RBAC
administered environments. We propose a risk measurement model to fill this gap:
our study introduces the notion of dynamic and adaptive risk measurement in RBAC
employed distributed environments. As part of our work, we employ data mining to
detect anomalies, i.e. queries with higher risk.

Similar to our approach, Bertino et al. use data mining on RBAC administered
databases. In [4], they employ data mining to detect intrusions. They use the Naïve
Bayes algorithm, which is a supervised learning technique to classify queries as
intrusions or not. On the other hand, we use an unsupervised learning algorithm (K-
means clustering) to detect outlier queries in our work. Our goal is not intrusion
detection.

Data mining algorithms have several other applications in the field of RBAC.
Schlegelmich and Steffens’s study, where they introduce a role mining tool with a
new approach, is an example of this [16]. Another implementation belongs to Vaidya
et al. [21]. Their work introduces RoleMiner, an unsupervised role mining tool.

3 Our Risk Evaluation Scheme

In this paper, we address the risk management problem in an RBAC employed
database and propose a mathematical model for measuring risk in such environments.

 Managing Risks in RBAC Employed Distributed Environments 1553

Since the amount of risk involved in granting an access request may depend on
various reasons, we base our quantitative risk calculation on several risk factors. With
respect to the fact that the management of RBAC is very flexible; users may be
dynamically added to roles, even after permissions have been granted to roles. As a
basis for our work, we consider a simple RBAC scenario where roles are assigned to
users, permissions are assigned to roles and after that actual execution of transactions
begin [11]. These relationships in the sample scenario are schematized in Figure 1.

Users

Task T1

Roles Permissions

Task T2
… Task Tn

Fig. 1. A Sample Scenario in RBAC Model

In our work, we take advantage of this simple fact of RBAC: Users assigned to the
same role are expected to behave similarly. This is because roles are already granted
access to perform a predefined set of actions and users are supposed to adopt these
roles. As long as users obey their role requirements, i.e. submit queries that are in
accordance with their current roles, we simply assign reasonable risk levels to them.
But when they behave in a manner that is contradictory to their role definitions, we
detect this as a role misuse. In this case we label this behavior as an anomaly and
assign high risk level to the current owner of this role.

The problem of risk assessment for a database user is analogous to that of a
potential customer who makes a credit card application to a bank. Just as the bank
asks the prospective customer’s personal information before releasing a card, our
system gets user credentials for identification purposes before granting the user’s
access request. After getting personal information, the first thing the bank does is to
search its history logs to find out previous records for the prospective customer. At
this point, an important difference between this example and our work needs to be
pointed: In the bank example, a global credit history is used to keep track of the
customer histories. On the other hand, in our design, we use local log files to store
user histories. Going back to the bank example, if record(s) with previous transactions
for the prospective customer are found, then the bank investigates whether or not the
customer well behaved (made credit payments on time) before. If no such records are
found, then the bank refers to the statistics of similar applications made before and
tries to find out how many of the brand new customers recorded good credit histories.
Other than these, the bank can take its decision only on the user’s personal
information, i.e. his credentials. At this point, the bank does one of the following: (1)
It takes the risk and gives the customer the credit card, because it needs customers and
money. (2) It simply refuses the application by just saying that he has insufficient
credit history.

Upon receiving an access request to the database, our risk model behaves like the
bank: it first retrieves queries that are considered to be normal and categorizes them.
The normal queries in our system are the ones that have been submitted to the

1554 E. Celikel et al.

database before and have been granted. Then we get individual queries submitted by
the current user and detect how far each of them is from the normal queries. We
expect that users with the same role definitions behave similarly. If the individual
query is not close enough to any of the normal role behaviors, we assign a high level
of risk for this particular query of the current user. If the individual query is close to
any of the normal role behaviors, then we assign a reasonable (low) risk level to him.
By repeating the same risk assignment for each query of the user, we end up with an
average overall risk value for that particular user. In case this risk level is too high, we
most probably reject his access request. There is another option as immediately
rejecting the user access, once a query submitted by him is detected to have too high
risk.

We design our risk evaluation mechanism such that, it can be embedded into the
RBAC model. In the sample scenario given in Figure 1, our design can find a place to
itself either in between user to role assignments, or in between role to permission
assignments. In the former we measure the amount of risk involved in assigning a
user to a particular role, and in the latter we measure the amount of risk in granting
the access rights (permissions) to the pre-defined roles. For both cases, the
implementation of our design does not change. The only thing that changes is the
input and output to the system.

We give a diagram of our design in Figure 2. In this design, we assume that our
risk evaluation mechanism is placed into role to permission assignment phase of the
RBAC model. As Figure 2 shows, there are four risk factors contributing to the
overall risk calculation: User credentials, set of current user queries, role history logs,
and the amount of utility expected by the execution of queries.

Set of current
user queries

User credentials

Expected utility

Weighted Sum

Risk Value

Data
Mining

Risk Determination

Database
query logs

SCQ

SC

H

C

U

Fig. 2. A Sample Scenario in RBAC Model

To assign users to roles in a distributed environment, we need to collect user
information, i.e. credentials to differentiate several users from each other. The other
reason why we need credentials is to localize the place of connection. We collect each
user’s credentials containing the information as user name, IP number of the
connection, date and time he last connected, etc. In our design, we denote user
credentials with C.

 Managing Risks in RBAC Employed Distributed Environments 1555

In order to determine the amount of risk a user carries, collecting his credentials is
not enough. We further need to analyze the queries submitted by him. To fairly
calculate the value of risk, we make our calculation over a set, other than individual
queries (Q). We refer to the collection of queries submitted by the same user as the set
of current user queries (denoted by SCQ). This is actually the history log for the current
user. While handling the set of current user queries, we employ a sliding window
mechanism. In practice, we can set different values for the window size. We repeated
tests with different window sizes as 10, 20 and 30. Since the results we obtained did
not change significantly, we set the smallest window size, i.e. 10 for our sample
implementation. The size of the sliding window can easily be adjusted to observe our
system’s response to changing window sizes.

The contents of SCQ are in the form of SQL queries. In our implementation, we
process the set of user queries twice: (1) to derive the nature of the query, which is
obtained by tokenizing each query into the SQL command itself, relation name(s) and
attribute name(s); (2) to compare it with the history of other user queries, i.e. role
history.

The third risk factor in our architecture is the role history log, which is in the same
format as the set of current user queries. This is a large file containing several user
queries and we denote it by H. While measuring risk, we use this simple idea: the best
way to estimate the future is to observe the past. So, before assigning a risk value to
the current user, we observe the database logs. This observation gives us an insight
about how the current user’s behavior will be like in the future.

The last component that we use for evaluating risk is the amount of expected utility
assuming that the access request is granted. We denote the expected utility by U.

So, given the set of risk factors, where C is the user credentials, SCQ is the set of
current user queries (with Q denoting the individual elements of the set SCQ), H is the
role history log and U is the expected utility, we suggest that the total expected return
(E) would be an accurate indication of risk. We also propose representing the total
expected return with a statistical utility function that we give in Equation 1:

() QMPUP1E ×−×−= (1)

In the above equation, MQ is the estimated misuse cost that is incurred to the
system by each individual query (Q) of the set of current queries (SCQ). This cost is
the inherent cost that the system incurs depending from the type of the SQL query
(e.g. SELECT, UPDATE, ADD, DELETE, etc.), the relation(s) (e.g. SALARY table,
HOBBIES table, etc.), and the attribute(s) (e.g. SSN attribute, DATEOFBIRTH
attribute, etc.). Moreover, in the above equation P denotes the probability of role
misuse; its estimation is expressed by the conditional probability given in Equation 2:

()H SQ, C,|MisusePrP CQ ,= (2)

In the following subsections, we give a detailed explanation of each risk factor that
we use in our model.

3.1 User Credentials (C)

In a distributed environment, where the number of users is usually very large,
credentials are the essential elements to identify and differentiate users. User

1556 E. Celikel et al.

credential(s) is the first risk factor that directly contributes to the calculation of the
probability of role misuse (Equation 2). In the risk model we propose, user credentials
are the identification components issued by participants in the database. We utilize
user credentials to obtain user’s personal information, together with his IP address,
and the information whether he has made an access request before or not. In our
international business organization example, the user credentials are the company
names that contribute to the coalition, and their country of origin. We may further
request information about whether or not a request owner participated in a joint
project before. Because, the existence of a former relationship can help us set the
level of initial risk with higher precision. As for the current implementation, we
assume that user credentials are input to the system via a secure and complete means:
e.g. smart card, RFID, automated user entry, etc.

3.2 Set of Current User Queries (SCQ)

The second risk factor in the calculation of the probability of role misuse (Equation 2)
is the set of current user queries, SCQ. This is actually the history log for the current
user. In our system, the decision whether to grant or deny an access request relies on
the estimated misuse cost (MQ) of each query (Q). This is what we call the nature of
the query. In order to determine the nature of the query, we do the following: By
analyzing a tokenized representation of the query, we determine the type of the query,
i.e. whether an insertion, deletion, or modification and what critical relation(s) and/or
attribute(s) it attempts to access. When we assign a risk value to the current query, the
first step we execute is to check whether this user has submitted queries to the system
before, i.e. we check the current user’s history logs. For such purpose, we collect
queries submitted by the same user under a group; we call the set of current user
queries (SCQ) and treat it using a sliding window mechanism. Each time we calculate
the risk value for the current query, we move the sliding window to process the new
query for the same user. In case the user has no history yet, i.e. he is a first time user,
then SCQ contains a single query. So, as an unknown user, we assign the highest level
of initial risk to his query. Eventually, if he submits new queries, we update his query
risk level as he builds up his own history in our system. This update mechanism is
what makes our risk calculation scheme dynamic and adaptive.

For the ongoing international organization example, the probable set of current
user queries can include the following questions: “How much money does country
A/B put in the joint project?”, “What is the product that we will produce in the new
factory?”, “In which city in country C we will set up our new factory?”, “What is the
date we will start functioning the factory?”, etc.

The order of processing for SCQ is after we get the user’s credentials and already
assigned a credentials risk to him. Even if the user has low credentials risk, SCQ may
still contain one or more queries that should be detected as highly risky. For example,
a user from country A (so, supposedly a legitimate user and hence carries low risk in
terms of credentials) may repeatedly ask questions as “What is the name and SSN of
the general manager for the new factory?”, “What is the name and SSN of the account
manager for the new factory?”, “What is the name and SSN of the director of the
human resources department for the new factory?”, etc. These insistent queries to
reveal the identity of employees should attract suspicion and our risk model assigns
high risk to the owner of such queries.

 Managing Risks in RBAC Employed Distributed Environments 1557

In order to compute the overall risk value for SCQ, we need to assign an estimated
misuse cost MQ (Equation 1) to each individual query Q of SCQ. We could assume that
MQ is a fixed value input to the system with each query submission. Instead, we
provide a better estimation that will determine MQ in an automated and more precise
manner. For that, we assign predetermined weight indices to each SQL command, to
each relation, as well as to each attribute in the database. The decision to assign which
weight to each attribute and each relation is totally domain specific. In general, we
deliberately assign higher weights for critical attributes and tables. For example, a
patient relation is more critical than hospital facilities relation. So, the attributes in the
former are assigned higher weights than that of the latter. Afterwards, we tokenize
each query to separate SQL commands, relation names and attribute names. Then, we
multiply each token with its corresponding weight index and eventually sum up all
multiplications to yield the estimated misuse cost value for the query itself. Basically,
we use Equation 3 for the calculation of MQ, where SQL denotes the SQL command,

iRw denotes the risk value assigned to the ith relation Ri, and
jiAw

,
denotes the risk

value assigned to the jth attribute of the ith relation.

∑∑∑
= ==

×+×+×=
n

i

m

j
A

n

i
RQ jii

wwwwSQLwM
1 1

3
1

21 ,

 (3)

The queries in our system are in the form of SQL queries, consisting of basic or
compound SQL commands. To make sure that we completely include the whole set of
SQL commands, we used a comprehensive list of them and assigned a predetermined
weight index to each. While assigning the weight indices, we take the amount and
type of information a command is querying into consideration. For example, the SQL
command SELECT is assigned a less weight index than that of the UPDATE or ADD
commands in our design, because SELECT only reads data but ADD and UPDATE
commands modify them. We repeat the risk weight assignment process for each
relation and attribute in the database. To obtain a reliable weight assignment, a
thorough analysis of the whole database is needed. For example, in our sample
international organization database, querying a table containing employee business
trips is less risky than querying a table storing information about employee
performances. For this reason, we assign a lower risk weight to the business trips
table than that of the employee performance table.

Likewise, for each attribute in the database, we determine how risky it would be to
reveal (or modify) that field and accordingly assign a weight index to it. Once the
weight assignment is complete, we can reuse it for future evaluations.

Syntactically, the SQL queries are made up of multiple clauses. A SELECT query,
for example, has three clauses:

SELECT attribute name(s)
FROM relation name(s)
WHERE condition(s)

So, for every SELECT command, we calculate the risk value of each clause by
multiplying each weight index. Then, we sum the risk value of each clause to
calculate the risk for the whole SQL command (Equation 3). We repeat the same
procedure for calculating the risk values for other SQL commands.

1558 E. Celikel et al.

3.2.1 Query Representations
One of the inputs to our system is represented by the queries submitted by users. The
queries can either belong to the current user, or to earlier users. Independently of its
owner, a query is in the form of SQL statements. This feature helps us represent
database queries in a standard, and more importantly in a shorter manner. We employ
a query representation scheme having three different levels of granularity, which is
similar to that of Bertino et al.’s in [4]. In the following three subsections we define
these query representation schemes in detail.

3.2.2.1 Coarse Grain. This representation has the simplest level of granularity.
Given a standard SQL query, it transforms it to the new format as: This representation
has the simplest level of granularity. Given a standard SQL query, it transforms it to
the new format as:
 , where a given SQL
command is symbolized with a three-component scheme: (1) the name of the SQL
command, (2) the number of relations involved in the command and (3) the count of
attributes involved in the command.

When this scheme is incorporated to represent input queries, we use Euclidean
distance or Hamming distance to calculate distances from cluster centroids. Euclidean
distance is a general metric for measuring the distance between two points in a multi-
planar space. For points A=(a1, a2, .., an) and B=(b1, b2, …, bn), the Euclidean distance
between them is calculated as:

()∑
=

−=
n

i
iiEuclidean bad

1

2 (4)

We use Euclidean distance for coarse grain and medium grain query represent-
tations. Since the fine grain representation of queries is simply a binary represent-
tation, we use Hamming distance to calculate the distances from cluster centroids for
such query representations. In essence, Hamming distance is a special form of the
Euclidean distance and allows faster calculation.

3.2.1.2 Medium Grain. This representation has finer granularity as compared to the
coarse grain technique. It represents SQL queries in the following format:
 where the first component is the name of the
SQL command and the second component AttributeCounter[i] contains the number of
attributes of the ith relation in the SQL command. This is a modified representation of
Bertino et al.’s corresponding (m-triplet) format [4]. In their work, the authors
symbolize the SQL command as a triplet by adding a binary bit vector of size equal to
the count of relations in the database. We simplify this notation by removing the bit
vector. Because, the attribute counter itself already signifies how many relations exist
in the database.

As the case with coarse grain, we use the Euclidean distance with medium
granularity to calculate distances from cluster centroids.

 Counter Attribute Counter lationRe Command SQL ,,

[] , CounterAttributeCommandSQL

 Managing Risks in RBAC Employed Distributed Environments 1559

3.2.1.3 Fine Grain. As the name implies, this is the finest level of granularity in our
implementation. This granularity represents a given SQL command with the new
format as:

where the second component is a binary matrix with the following rule:

[][]
⎩
⎨
⎧

=
otherwise

accessed is relation ith the of attribute jth if
jiatrixAttributeM

0

1

This representation has a modification to the f-triplet mode of Bertino et al.’s [4].
We remove the binary bit vector of size equal to the count of relations in the database
due to the same reason given in subsection 3.2.1.2.

Since fine grain representation contains the AtrributeMatrix in a binary format, we
use the Hamming distance metric to calculate distances from cluster centroids. This
method is easier to implement and yields better performance in terms of speed on a
binary matrix.

Throughout our implementation, we employ each of the above mentioned
granularities to represent the set of current user queries as well as role history queries
on real world database. As part of the application, we measure how successful each
granularity is in determining the query clusters. Besides, we calculate the distance of
each individual query belonging to the current user to each cluster. We then compare
results to determine which granularity scheme best resembles the real world.
Section 4 gives the experimental results on the real data set.

3.3 Role History Log (H)

In Equation 2, the third risk factor that is used to compute the probability of role
misuse is the role history log (H). It consists of individual user queries that were
submitted before. An important property of the role history contents is that, they are
the queries which were granted access before. The only possible way for a query to be
included into the history log is to obey the predefined role definitions. So, the history
contains queries with considerably lower level of overall risk, what we call as normal
queries.

We make use of data mining to generate clusters out of role history logs (H), so
that we categorize what type of behaviors users had before for the same role. Then,
we refer to the current user’s submissions and obtain individual queries (Q) from the
set of current user queries (SCQ) to calculate their distances from the role history
clusters. In this manner, we determine how different the current user behaves from
previous users. At the end of assigning a risk value for the current query, we add it to
the role history log. This is another aspect that makes our design dynamic and
adaptive.

For our ongoing international organization example, imagine that countries A, B
and C had established another coalition –say coalition CBA- before. And assume that
companies from countries A, B an C have had such queries recorded before into the
history logs as: “What will be the name of our product?”, “How many people will be
working in our factory?”, “How much money does country A/B put in the joint

[][] Matrix Attribute Command SQL ,

1560 E. Celikel et al.

project?”, etc. We see that the question “How much money does country A/B put in
the joint project?” in role history is exactly the same as the one asked in by the current
user (Section 3.2.). So, by analyzing each individual query in set SCQ, we determine if
they are in “acceptable” distance from history clusters or not. Afterwards, we take an
average of the distances to assign a single value indicating the risk contribution for
the whole set SCQ for the current user.

3.3.1 Using Data Mining
Data mining is applied to accomplish two fundamental types of tasks: The former
type is called predictive and is used to estimate the value of a particular attribute
based on other attributes. The latter type is called descriptive and it aims at deriving
patterns so as to predict future behaviors [19, 24]. In our work, we employ descriptive
data mining. More specifically, we utilize the K-means clustering for anomaly
detection. It helps us form clusters to categorize historical data and then to determine
how far (or close) the recent data to each cluster. In K-means clustering, the mean of a
group of points determines a cluster centroid. By calculating centroids for each group,
we get the cluster centers.

Choosing the parameter k is the key point for the success of K-means clustering
algorithm. To determine the best possible k, we use the v-fold cross validation
technique [14, 22]. Since the value of k is not known a priori, we first divide the
overall data set into v different segments (folds). We use v-1 segments as the training
set and the vth segment as the application set. We next apply the analysis to the v-1
segments and then apply the results to the vth segment. By repeating this procedure v
times for each fold, we calculate an overall average and set the value of clustering
parameter k accordingly. While doing this, we use the distance of each cluster from
each other as the decision criteria. In our work, we set v=10 and l=9 for determining
k=5.

In our work, we utilize Weka knowledge analysis tool for implementing the K-
means clustering algorithm [23]. We derive query clusters from role history logs. By
applying v-fold cross validation, we determine the optimum k value for the number of
clusters, instead of Weka’s default value of k=2.

K-means clustering distributes points into clusters in a two-dimensional space.
Several distance metrics exist in clustering to calculate distances from cluster
centroids: Euclidean, squared Euclidean, city-block (Manhattan), Chebychev, power
distance and performance disagreement. Among them, we choose the Euclidean
distance because it considers both dimensions and neutralizes their effect by first
squaring the distance, then by taking the square root of it.

3.4 Expected Utility (U)

An important risk factor that contributes to the calculation of the total expected return
(Equation 1) in our system is the expected utility (U). In the international organization
example, the expected utility is the profit that is expected by setting up the factory in
country C. Let’s assume that the city in country C where the new factory is to be
founded is one of the most unsafe cities in this country. So, setting up the new
business there incurs a high risk regarding factory workers’ security. On the other
hand, this city has very fertile soil to grow the major material that is needed for the

 Managing Risks in RBAC Employed Distributed Environments 1561

product –say product X- that will be produced in that factory. Then, the coalition
ABC may still take the risk and set up the factory in country C just because the
expected utility is very high.

During implementation, we assume that the expected utility for the current query is
given as a fixed value.

4 Experimental Results

We run our program on a real world data set [4]. In our current implementation, we
incorporate our risk model to calculate the level of risk in “role to permission”
assignments in RBAC. In our risk model, all the factors except the misuse probability
(P) are given as parameters to our system. Therefore, in the following subsections, we
focus only on measuring P in our experimentations.

4.1 Data Set Definition

To implement our design, we used a real data set containing SQL queries submitted in
a database of a medical clinic [4]. The database consists of 130 relations with totally
1201 attributes. The query log has 7588 instances that were submitted by users
belonging to one of 8 different types of roles in the database.

4.2 Implementation

We implemented three different granularities as coarse, medium and fine on the data
set. In order to determine the value of k for K-means clustering, we applied 10-fold
cross-validation. This work yielded the best results for k=5. Setting k=5 in K-means
algorithm, we first determined the cluster centroids for each role. Then, we ran our
scheme on individual user queries in each role in a sliding window basis to calculate
the distance of each current user query from each cluster centroid. We anticipate that
set of current user queries are close to the clusters belonging to his actual role
definitions, but with different role definitions, we expect our design to yield longer
distances to the cluster centroids.

While determining the level of risk, we make use of the probability that a user
belonging to Role X behaves as if he is a user belonging to Role Y. We call this the
role misuse probability (P), whose formula is given in Equation 1. In an ideal system,
such role intersections are expected to be very few for security purposes. This
requires the role misuse probability to be as low as possible. If this probability is high,
then we assign a high risk value for the query. The calculation of the misuse
probability involves the normal probability distribution of the minimum distance to
the cluster centroids that we obtained earlier with K-means clustering. We set

()QdP φ−= 1 , where is the misuse probability, φ is the probability density function

(PDF) of normal distribution, and
Qd is the distance value for the query Q to its

nearest cluster centroid. The normal distribution PDF computes ()Qdφ by using the

mean (μ) and standard deviation (σ) values. We repeat the risk calculation steps for
each query belonging to a single user to compute the overall risk for him. Once

1562 E. Celikel et al.

parameters are set, the risk evaluation becomes a repetitive routine and can be
accomplished in a straightforward and easy way.

The database we used in our experiments is considerably large with 130 relations
and 1201 attributes. So, employing coarse grain representation involves two columns
only, while medium grain involves as many columns as the number of relations (130)
and fine grain representation involves as many columns as the number of attributes
(1201) for the current application. Handling so many columns for misuse probability
calculation is computationally very expensive. The runtime for medium grain and fine
grain approaches were in the order of several ten minutes. For this reason, we used
coarse grain representation to calculate distances and the misuse probabilities in the
ongoing experiments.

We conducted two sets of experiments for the calculation and interpretation of
misuse probabilities while setting Role 0 as the base role for both cases. In the former,
we calculated the distances of all queries in roles other than Role 0 to the base role. In
the latter, we conducted the same experiments to calculate the distances of queries in
Role 0 to the base role, i.e. Role 0. The role group that contains the largest number of
queries is Role 0 for the current data set. For this reason, we set Role 0 as the base
role in our experiments. The reason why we combined the queries belonging to all
role groups except for Role 0 is that, most of the individual role groups have very few
(even single) queries. So, the base role Role 0 has 6170 queries and the rest of the role
groups 1, 2, 3, 4, 5, 6, and 7 have 4+20+104+1+156+10+1123=1418 queries in total.

In the first part of the implementation, we first formed the mixture group of queries
from role groups 1, 2, 3, 4, 5, 6 and 7. To obtain misuse probabilities, we first
implemented K-means clustering to find the cluster centroids in the base role, and
then we used the distance of each query (

Qd) to calculate the average distance to the

nearest centroid in Role 0 (μ) and its standard deviation (σ) for this role. Assuming
that the queries from Role 0 show a normal pattern, we used the population mean (μ)
and standard deviation (σ) for the calculation of the normal distribution probability,
where the population is the whole set of query distances in Role 0. Table 1 lists the
results we obtained.

Table 1. Misuse probabilities of all queries with base role=Role 0

 a.) from Roles 1, 2, 3, 4, 5, 6, 7 b.) from Role 0

Probability Group Distance (dQ) Probability (1-Φ(dQ))

AllRolesExcept0_g1 0.23 0.8809
AllRolesExcept0_g2 0.26 0.8801
AllRolesExcept0_g3 0.74 0.8690
AllRolesExcept0_g4 0.77 0.8685
AllRolesExcept0_g5 1.01 0.8643
AllRolesExcept0_g6 1.26 0.8607
AllRolesExcept0_g7 1.74 0.8570
AllRolesExcept0_g8 1.90 0.8567
AllRolesExcept0_g9 2.10 0.8570
AllRolesExcept0_g10 2.33 0.8583
AllRolesExcept0_g11 2.74 0.8628
AllRolesExcept0_g12 2.90 0.8652
AllRolesExcept0_g13 2.92 0.8656
AllRolesExcept0_g14 4.02 0.8921
AllRolesExcept0_g15 6.03 0.9518
AllRolesExcept0_g16 6.40 0.9606
AllRolesExcept0_g17 8.38 0.9903
AllRolesExcept0_g18 9.68 0.9970
AllRolesExcept0_g19 10.10 0.9981

Probability Group Distance (dQ) Probability (1-Φ(dQ))

Role0_g1 0.23 0.8959
Role0_g2 0.26 0.8953
Role0_g3 0.74 0.8860
Role0_g4 0.77 0.8855
Role0_g5 1.26 0.8784
Role0_g6 1.34 0.8774
Role0_g7 1.59 0.8751
Role0_g8 1.74 0.8740
Role0_g9 1.90 0.8732

Role0_g10 2.01 0.8728
Role0_g11 2.33 0.8726
Role0_g12 2.74 0.8742
Role0_g13 2.90 0.8754
Role0_g14 2.92 0.8756
Role0_g15 4.02 0.8919
Role0_g16 6.03 0.9392
Role0_g17 6.40 0.9476
Role0_g18 8.38 0.9816
Role0_g19 9.68 0.9925
Role0_g20 10.10 0.9947
Role0_g21 17.01 ~1.0000
Role0_g22 20.00 ~1.0000

 Managing Risks in RBAC Employed Distributed Environments 1563

In Table 1a, we list the misuse probability values for different distance groups
together with each group’s distance value. According to the table, there are 19 such
distance groups based on the values. When we look at the probability values, we see
that as the distance gets higher, the probability value increases, as was expected.

We repeated the same experiment to measure the misuse probabilities of queries in
Role 0 to itself, i.e. to Role 0, and we list them in Table 1b.

Our expectation was that, the misuse probabilities for Role 0 to Role 0 (Table 1b)
would be much lower than that of all other roles to Role 0 (Table 1a). Results show
that the misuse probabilities for Role 0 to Role 0 are still very high, being very close
the values listed in Table 1a. The reason for that is the occurrence of the same or
similar queries in Role 0, as well as in other roles in the data set. For example, the
SQL query in Role 0 as:

SELECT check_in_date, planed_start_time, contract_no, treatment_id,
treatment_consultant, branch_id
FROM treatment_schedule
WHERE customer_id = '100300199' and treatment_status = 1
ORDER BY check_in_date desc;

occurs very similarly in Role 1 as:
SELECT check_in_date, planed_start_time, contract_no, treatment_id,
treatment_consultant, branch_id
FROM treatment_schedule
WHERE customer_id = '100200072' and treatment_status = 1
ORDER BY check_in_date desc;

and in Role 2 as:
SELECT check_in_date, planed_start_time, contract_no, treatment_id,
treatment_consultant, branch_id
FROM treatment_schedule
WHERE customer_id = '100201056' and treatment_status = 1
ORDER BY check_in_date desc;

and in Role 7 as:
SELECT check_in_date, planed_start_time, contract_no, treatment_id,
treatment_consultant, branch_id
FROM treatment_schedule
WHERE customer_id = '100300499' and treatment_status = 1
ORDER BY check_in_date desc;

The only difference in the four queries listed above is the customer_id number that
is queried, whereas for the rest the queries are the same. So, the representation of each
query in different role groups would be exactly the same in coarse, medium and fine
grain, respectively. Likewise, the SQL query in Role 0 as:

SELECT *
FROM contract_record
WHERE contract_no = 'm2810'

and another query in Role 0 as:
SELECT contract_date, contract_no, outstanding_balance, active_status
FROM contract_record
WHERE customer_id= '100201496' and contract_type =0 and (active_status
= 0 or outstanding_balance <> 0) and active_status <> 2
ORDER BY contract_date desc;

occurs in Role 7 as:
SELECT *
FROM contract_record
WHERE contract_no = 't4596';

1564 E. Celikel et al.

and again in Role 7 as:
SELECT contract_date, contract_no, outstanding_balance, active_status
FROM contract_record
WHERE customer_id= '100300951' and contract_type =0 and (active_status
= 0 or outstanding_balance <> 0) and active_status <> 2
ORDER BY contract_date desc;

multiple times. There are several such occurrences that would eventually lead to the
same query representation for different roles in the data set. Consequently, a more
precise representation for the queries may be needed for a better performance of our
risk model.

According to the risk model we introduce in order to lower the level of risk, the
total expected return (E) of Equation 1 should be greater than 0. Thus, the inequality
()

U

M

P

P Q>−1 must hold. Our experimental results in Tables 1a and 1b indicate that if

the role definitions have significant overlap, we end up with high misuse probabilities
for all roles. Based on the calculated misuse probabilities, the inequality above
implies that the expected utility (U) must be at least 7 times larger than the misuse
cost (MQ) on the average to make the total expected return (E) positive.

As the experimental work shows the role boundaries are not distinct in the real
world data set we use, which leads to role overlapping. Apparently, the distribution of
queries among roles in this data set is not well designed. Additionally, query
distribution among roles is significantly uneven. With an automatically generated
synthetic data set, one can most probably obtain more reasonable results with the risk
evaluation model we propose.

5 Conclusions and Future Work

In this paper we propose a quantitative model to measure risk of role misuse in RBAC
employed distributed environments. Our design is an extension to the well known
standard access control model called RBAC. Even if RBAC provides a
comprehensive infrastructure, it does not consider the amount of risk involved in
granting access requests. This risk is incurred by role misuse. We design and
implement a risk model to complement RBAC for enhanced access control. Our risk
calculation scheme is based on a statistical utility function. For that, it uses the risk
factors as user credentials, set of current user queries, role history logs and expected
utility. Our architecture is flexible enough to be placed in user to role or role to
permission assignments in the RBAC model.

To represent queries we incorporated three different granularities and compared
their performances. Due to the large amount of relations and attributes in the data set,
the coarse grain approach yielded the best results. We also utilized data mining to find
out different user clusters based on role history. We then determined how far each
individual query of the current user is from these clusters.

Implementation of our scheme on a real data set showed that there are two main
sources of risk for a distributed database environment: (1) the inherent risk incurred
by user credentials, (2) the risk caused by role misuse. It is considerably easier to
manage the former case because role assignments are possible only after ensuring that

 Managing Risks in RBAC Employed Distributed Environments 1565

the user credentials comply with the database requirements. In the latter, we can
detect role misuse only when role assignments are already made, which is usually
too late.

Since the K-means clustering results did not yield the expected results in terms of
query classification among roles, we suggest that the risk management scheme should
focus more on the determination of the nature of query that we proposed in
Section 3.2. With regards to the experimental work, we see that the most part of the
risk is sourced from the nature of the query, i.e. how many attributes a query attempts
to access and what are these attributes. So, to measure the risk properly we need to
tokenize and analyze user queries individually.

As part of a broader solution, we also suggest minimizing role definitions in the
database, if database intervention is possible. In that case, while we keep the number
of tasks constant, we increase the number of roles in the system to accomplish these
tasks. This, in turn, means assigning multiple roles to individual users. Also, we
propose employing query templates in the database to prevent overlapping roles.
Considering the two main sources of risk, we need to take precautions for each
source. For credentials, the risk evaluation should consider when, where, and how
frequently a user is connecting for sending queries. So, we need to bring strict
controls over credentials. For the role misuse, we should analyze the attributes that
each role can access.

To obtain better results, we will search data sets that will fulfill the requirements of
our design. Such a data set needs to have well defined and differentiated roles and
distinct queries that are evenly distributed among roles. If we cannot find a real data
set as requested, then we will generate synthetic data to test our system or reorganize
the existing data set. Furthermore, we will employ K-means clustering for other
values of k (e.g. k+1, k+2, etc.) than 5. We will also search for other data mining
techniques (e.g. EM algorithm) to cluster the query histories. By comparing the new
results with our current implementation, we will determine the optimum data mining
algorithm. We will also investigate alternative ways of representing the database
queries. We plan on expanding our work to determine what to do after risk evaluation.
Our preliminary suggestion is to employ role encryption if the risk is too high. By
encrypting the role information, we expect to strengthen the accountability of the
system, hence to ensure better security.

Acknowledgements

The work reported in this paper is part of the project "Systematic Control and
Management of Data Integrity, Quality and Provenance for Command and Control
Applications" partially funded by the USA Air Force Office of Sponsored Research.

References

1. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual commmunities, Hawaii
International Conference on System Sciences, Hawai, USA (January 2000)

2. Anderson, J.F., Brown, R.L.: Risk and Insurance, Number 1-21-00 in Study Notes, Society
of Actuaries (2000)

1566 E. Celikel et al.

3. Bacon, J., Dimmock, N., Ingram, D., Moody, K., Shand, B., Twigg, A.: SECURE
Deliverable 3.1: Definition of Risk Model (December 2002)

4. Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion detection in RBAC-administered
databases. In: 21st Annual Comp. Sec. Applc Conf., Tucson, AR, USA (December 2005)

5. Cahill, V., Wagealla, W., Nixon, P., Terzis, S., Lowe, H., McGettrick, A.: Using trust for
secure collaboration in uncertain environments. IEEE Pervasive Comp. 2, 52–61 (2003)

6. Carbone, M., Dimmock, N., Krukow, K., Nielsen, M.: Revised Computational Trust
Model, EU IST-FET Project Deliverable (2004)

7. Dimmock, N.: How much is enough? Risk in trust-based access control. In: IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises - Enterprise Security, pp. 281–282 (June 2003)

8. Dimmock, N., Belokosztolszki, A., Eyers, D., Bacon, J., Moody, K.: Using trust and risk
in role-based access control policies. In: 9th ACM Symposium on Access Control Models
and Technologies, Yorktown Heights, New York, USA (June 2-4, 2004)

9. Dimmock, N., Bacon, J., Ingram, D., Moody, K.: Risk models for trust-based access
control (TBAC). In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS,
vol. 3477, Springer, Heidelberg (2005)

10. English, C., Wagealla, W., Nixon, P., Terzis, S., Lowe, H., McGettrick, A.: Trusting
collaboration in global computing systems. In: Nixon, P., Terzis, S. (eds.) iTrust 2003.
LNCS, vol. 2692, pp. 28–30. Springer, Heidelberg (2003)

11. Ferraiolo, D., Kuhn, R.: Role-based access control. In: 15th NIST-NSCS National
Computer Security Conference, pp. 554–563 (1992)

12. Gallaher, M.P., O’Connor, A.C., Kropp, B.: The Economic Impact of Role-Based Access
Control, Planning Report 02-1 for NIST, NC, USA (March 2002)

13. Joint Staff, Net-Centric Operational Environment Joint Integrating Concept, Washington,
DC, USA (October 2005)

14. McLachlan, G., Peel, D. (eds.): Finite Mixture Models. Wiley and Sons, USA (2000)
15. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role based access control

models. IEEE Computer 29(2), 38–47 (1996)
16. Schlegelmilch, J., Steffens, U.: Role mining with ORCA. In: Proceedings of the 10th ACM

Symp on Access Cont. Models &Techn., Scandic Hasselbacken, Stockholm (June 1-3, 2005)
17. Shand, B., Dimmock, N., Bacon, J.: Trust for ubiquitous, transparent collaboration.

Wireless Networks 10, 711–721 (2004)
18. Smith, T.: Information risk: a new approach to information technology security, IT

Solutions [Accessed July 18, 2006], http://itsolutions.sys-con.com
19. Tan, P.N., Steinbach, M., Kumar, V.: Intro. to Data Mining, Pearson Education, USA

(2006)
20. Thuraisingham, B.: Information Operations Across Infospheres, Annual Report for Air

Force Office of Scientific Research (October 2006)
21. Vaidya, J., Atluri, V., Warner, J.: RoleMiner: mining roles using subset enumeration. In:

13th ACM Conf. on Computer & Comms. Security, Alexandria, VA, USA (October 2006)
22. V-fold Cross-Validation [Acc. October 26, 2006], http://www.statsoft.com/textbook/

stcluan.html
23. Weka [Accessed October 26, 2006], http://www.cs.waikato.ac.nz/ml/weka
24. Witten, I.H., Frank, E.: Data Mining. Morgan Kauffman Pub, USA (2000)
25. Xiong, L., Liu, L.: Building trust in decentralized peer-to-peer electronic communities. In: Fifth

International Conference on Electronic Commerce, Pittsburgh, PA, USA (October 2003)
26. Zhang, C.N., Yang, C.: An object-oriented RBAC model for distributed system. In:

Working IEEE/IFIP Conference on S/w Arch. (August 28-31, 2001)

	Managing Risks in RBAC Employed DistributedEnvironments
	Introduction
	Our Contribution

	Background
	Our Risk Evaluation Scheme
	User Credentials (C)
	Set of Current User Queries (SCQ)
	Role History Log (H)
	Expected Utility (U)

	Experimental Results
	Data Set Definition
	Implementation

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

